Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
eNeuro ; 11(3)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38548335

RESUMEN

Neuroprotection after injury or in neurodegenerative disease remains a major goal for basic and translational neuroscience. Retinal ganglion cells (RGCs), the projection neurons of the eye, degenerate in optic neuropathies after axon injury, and there are no clinical therapies to prevent their loss or restore their connectivity to targets in the brain. Here we demonstrate a profound neuroprotective effect of the exogenous expression of various Ca2+/calmodulin-dependent protein kinase II (CaMKII) isoforms in mice. A dramatic increase in RGC survival following the optic nerve trauma was elicited by the expression of constitutively active variants of multiple CaMKII isoforms in RGCs using adeno-associated viral (AAV) vectors across a 100-fold range of AAV dosing in vivo. Despite this neuroprotection, however, short-distance RGC axon sprouting was suppressed by CaMKII, and long-distance axon regeneration elicited by several pro-axon growth treatments was likewise inhibited even as CaMKII further enhanced RGC survival. Notably, in a dose-escalation study, AAV-expressed CaMKII was more potent for axon growth suppression than the promotion of survival. That diffuse overexpression of constitutively active CaMKII strongly promotes RGC survival after axon injury may be clinically valuable for neuroprotection per se. However, the associated strong suppression of the optic nerve axon regeneration demonstrates the need for understanding the intracellular domain- and target-specific CaMKII activities to the development of CaMKII signaling pathway-directed strategies for the treatment of optic neuropathies.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedades del Nervio Óptico , Traumatismos del Nervio Óptico , Ratones , Animales , Células Ganglionares de la Retina/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Axones/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Regeneración Nerviosa/fisiología , Enfermedades del Nervio Óptico/metabolismo , Isoformas de Proteínas/metabolismo , Supervivencia Celular/fisiología
2.
Elife ; 112022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259089

RESUMEN

Many neurons in the adult central nervous system, including retinal ganglion cells (RGCs), degenerate and die after injury. Early axon protein and organelle trafficking failure is a key component in many neurodegenerative disorders yet changes to axoplasmic transport in disease models have not been quantified. We analyzed early changes in the protein 'transportome' from RGC somas to their axons after optic nerve injury and identified transport failure of an anterograde motor protein Kif5a early in RGC degeneration. We demonstrated that manipulating Kif5a expression affects anterograde mitochondrial trafficking in RGCs and characterized axon transport in Kif5a knockout mice to identify proteins whose axon localization was Kif5a-dependent. Finally, we found that knockout of Kif5a in RGCs resulted in progressive RGC degeneration in the absence of injury. Together with expression data localizing Kif5a to human RGCs, these data identify Kif5a transport failure as a cause of RGC neurodegeneration and point to a mechanism for future therapeutics.


Asunto(s)
Traumatismos del Nervio Óptico , Animales , Transporte Axonal , Axones/metabolismo , Cinesinas/genética , Ratones , Ratones Endogámicos C57BL , Regeneración Nerviosa , Células Ganglionares de la Retina/metabolismo
3.
PLoS One ; 15(12): e0242884, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33315889

RESUMEN

Loss of retinal ganglion cells (RGCs) in optic neuropathies results in permanent partial or complete blindness. Myocyte enhancer factor 2 (MEF2) transcription factors have been shown to play a pivotal role in neuronal systems, and in particular MEF2A knockout was shown to enhance RGC survival after optic nerve crush injury. Here we expanded these prior data to study bi-allelic, tri-allelic and heterozygous allele deletion. We observed that deletion of all MEF2A, MEF2C, and MEF2D alleles had no effect on RGC survival during development. Our extended experiments suggest that the majority of the neuroprotective effect was conferred by complete deletion of MEF2A but that MEF2D knockout, although not sufficient to increase RGC survival on its own, increased the positive effect of MEF2A knockout. Conversely, MEF2A over-expression in wildtype mice worsened RGC survival after optic nerve crush. Interestingly, MEF2 transcription factors are regulated by post-translational modification, including by calcineurin-catalyzed dephosphorylation of MEF2A Ser-408 known to increase MEF2A-dependent transactivation in neurons. However, neither phospho-mimetic nor phospho-ablative mutation of MEF2A Ser-408 affected the ability of MEF2A to promote RGC death in vivo after optic nerve injury. Together these findings demonstrate that MEF2 gene expression opposes RGC survival following axon injury in a complex hierarchy, and further support the hypothesis that loss of or interference with MEF2A expression might be beneficial for RGC neuroprotection in diseases such as glaucoma and other optic neuropathies.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Alelos , Animales , Recuento de Células , Humanos , Factores de Transcripción MEF2/deficiencia , Factores de Transcripción MEF2/genética , Ratones , Traumatismos del Nervio Óptico/genética , Mutación Puntual , Transducción de Señal
4.
Invest Ophthalmol Vis Sci ; 60(7): 2438-2448, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31158276

RESUMEN

Purpose: Corneal endothelial dysfunction leads to corneal edema, pain, and vision loss. Adequate animal models are needed to study the safety and efficacy of novel cell therapies as an alternative to corneal transplantation. Methods: Primary human corneal endothelial cells (HCECs) were isolated from cadaveric donor corneas, expanded in vitro, transduced to express green fluorescent protein (GFP), loaded with superparamagnetic nanoparticles, and injected into the anterior chamber of adult rabbits immediately after endothelial cell or Descemet's membrane stripping. The same volume of balanced salt solution plus (BSS+) was injected in control eyes. We compared different models for inducing corneal edema in rabbits, and examined the ability of transplanted HCECs to reduce corneal edema over time by measuring central corneal thickness and tracking corneal clarity. GFP-positive donor cells were tracked in vivo using optical coherence tomography (OCT) fluorescence angiography module, and the transplanted cells were confirmed by human nuclei immunostaining. Results: Magnetic HCECs integrated onto the recipient corneas with intact Descemet's membrane, and donor identity was confirmed by GFP expression and immunostaining for human nuclei marker. Donor HCECs formed a monolayer on the posterior corneal surface and expressed HCEC functional markers of tight junction formation. No GFP-positive cells were observed in the trabecular meshwork or on the iris, and intraocular pressure remained stable through the length of the study. Conclusions: Our results demonstrate magnetic cell-based therapy efficiently delivers HCECs to restore corneal transparency without detectable toxicity or adverse effect on intraocular pressure. Magnetic delivery of HCECs may enhance corneal function and should be explored further for human therapies.


Asunto(s)
Trasplante de Células/métodos , Enfermedades de la Córnea/cirugía , Sistemas de Liberación de Medicamentos , Endotelio Corneal/trasplante , Magnetoterapia/métodos , Nanopartículas de Magnetita/química , Animales , Cámara Anterior/citología , Supervivencia Celular/fisiología , Células Cultivadas , Enfermedades de la Córnea/patología , Portadores de Fármacos , Endotelio Corneal/metabolismo , Endotelio Corneal/cirugía , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Presión Intraocular , Sustancias Luminiscentes/metabolismo , Modelos Animales , Conejos , Donantes de Tejidos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...